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An introduction to the 
regulation of wound healing by 

micromechanical forces

It is widely acknowledged that exudate from 
non-healing wounds contains elevated levels 
of proteases, such as matrix metalloproteinases 

and polymorphonuclear elastase (Barrick et al, 1999; 
Trengove et al, 1999; Yager and Nwomeh, 1999). The 
excessive action of these proteases leads to considerable 
reduction in growth factors (He et al, 1999) and 
proteinase inhibitors; cleavage of matrix components, 
such as collagens, elastin and fibronectin, and, 
consequently, to the destruction of the extracellular 
matrix (ECM; Yager and Nwomeh, 1999). 

In addition, markedly increased levels of pro-
inflammatory cytokines are released by macrophages 
and granulocytes in non-healing wounds (Harris et 
al, 1995) and chronic wounds have comparatively 
higher concentrations of reactive oxygen and nitrogen 
species than acute wounds (James et al, 2003). As 
a consequence, these wounds are trapped in the 
inflammatory phase and often do not heal for months 
or even years.

It has been suggested that changing the mostly 
destructive state of chronic wounds to a more 

physiological wound milieu could re-establish the 
structural requisites for normal cell proliferation, 
migration and differentiation and would move the 
wound towards healing. A literature review was 
conducted to find and summarise relevant research 
on micromechanical forces and microdeformation 
related to wound healing. The following electronic 
databases were searched: CINHAL, the Cochrane 
Central Register of Controlled Trials, the Cochrane 
Database of Systematic Reviews, the Database of 
Abstracts of Reviews of Effects, Health Technology 
Assessments, National Health Service Economic 
Evaluation, Embase, Ovid Medline and PubMed. 

Significance of micromechanical 
forceS for wound healing
Negative pressure wound therapy (NPWT) has been 
shown to effectively support healing by augmenting 
blood flow (Morykwas et al, 2001), decreasing 
oedema (Gustaffson et al, 2007) and reducing the 
wound area (Isago et al, 2003). In addition, NWPT 
induces granulation tissue formation (Jacobs et al, 
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Mechanical forces influence cellular organisation and behaviour. Without mechanical 
stimuli, cells stop proliferating and migrating, undergo cell-cycle arrest and eventually 
die. Mechanical cues, therefore, have fundamental effects on wound healing. A literature 
review was conducted to explore the effects of micromechanical forces and tissue 
reactions at a microscopic level on wound healing, and how these forces may be harnessed 
in wound care. It is clear from research from a range of databases, chiefly on non-wound 
tissues, that micromechanical forces can have a significant influence on tissue growth 
and function. When applied to wound healing, it can be deduced that these forces alter 
cell proliferation and differentiation, and affect cytokine release and matrix protein 
secretion. In contrast to healing wounds, the structural requisites for the transduction 
of mechanical cues are lacking in chronic wounds. The absence of extracellular matrix 
and the accumulation of wound fluid can lead to the formation of ‘dead space’, across 
which mechanical stimuli cannot be transferred. It is suggested that application of 
micromechanical forces to chronic wounds — either by negative pressure wound therapy 
or specially designed dressings — will promote wound healing by induction of appropriate 
microdeformation and that further research is needed in this area.
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2009; Zhou et al, 2013), cell proliferation (Scherer et 
al, 2009) and angiogenesis (Jacobs et al, 2009; Scherer 
et al, 2009; Zhou et al, 2013), as well as providing 
a moist wound environment. NPWT may also 
influence the wound microenvironment by reducing 
inflammatory proteases (Moues et al, 2008) and 
decreasing bacterial load (Zhou et al, 2013). In terms 
of its mechanotherapeutic effects, NPWT induces 
two types of tissue deformation (Huang et al, 2013): 
��Macrodeformation: wound contraction
��Microdeformation: tissue reactions at 
microscopic level.
NPWT has, therefore, also been termed 

microdeformational wound therapy (MDWT) 
(Lancerotto et al, 2012; Huang et al, 2013). 

Micromechanical forces inducing 
microdeformations on cellular level can stimulate 
cell proliferation and division (Saxena et al, 2004; 
Scherer et al, 2008; Lu et al, 2011); and this effect 
has been harnessed in medical fields. For example, 
plastic surgeons exploit tissue expansion to expand 
soft-tissue envelopes in reconstructive surgery; and 
orthopaedic surgeons and maxillofacial surgeons use 
distraction osteogenesis to lengthen bones (Saxena 
et al, 2004; Huang et al, 2013). Hence, it follows 
that mechanotherapy at tissue and cellular level, by 
application of micromechanical forces to the wound, 
will support wound healing.

cellS can reSpond to mechanical 
SignalS
The human body is constantly subjected to 

mechanical forces that directly affect cellular 
functions (Huang et al, 2013). Research in the field of 
mechanobiology has highlighted how mechanical 
forces regulate cellular organisation and behaviour. 
Mechanical stress applied in the ‘non-traumatic’ 
range causes changes in form and composition 
at the cellular level, until a suitable stress state is 
re-established (Raeber et al, 2008). Mechanical 
signals modulate almost all cell functions, including 
migration (Alenghat and Ingber, 2002; Raeber et al, 
2008) and proliferation (Huang and Ingber, 1999; 
Atance et al, 2004; Saxena et al, 2004; Wells, 2008). 

Martinac et al (1987) described the first 
mechanically responsive transmembrane-signaling 
protein in 1987. Transmembrane protein receptors 
allow cells to explore the biophysical state of their 
surroundings and to react to it (Kung, 2005; Ingber, 
2008) by a process called mechanotransduction 
(Alenghat and Ingber, 2002; Figure 1). 

Other cellular structures, such as integrins 
(Katsumi et al, 2004) and the cytoskeleton 
itself (Ingber, 1997), also play a crucial role in 
mechanosensing; serving as sensors and actuators in 
cell migration (Raeber et al, 2008).

Integrins are directly engaged in cell migration 
through actinomyosin-controlled cell contraction and 
integrin-mediated binding and release of extracellular 
matrix ligands necessary for cell movement. Research 
shows that stretched cells proliferate (Atance et 
al, 2004; Wells, 2008) in vitro, but cells without 
mechanical stress assume spherical shape, go into cell-
cycle arrest and die by apoptosis (Huang and Ingber, 
1999). Saxena et al (2007) investigated these effects 
more closely in vivo, employing the rat ear model to 
investigate the biological response of soft tissue to 
forces. Their gene expression studies demonstrated 
that the hypoxia pathway might be an important 
modulator of cellular reactions to mechanical stress 
(Saxena et al, 2007).

Moreover, fibroblasts react to MDWT with 
increased proliferation and expression of collagen 
type I (COL1A1), alpha smooth muscle actin 
(α-SMA), basic fibroblast growth factor (bFGF) and 
transforming growth factor beta (TGF-β1) (Lu et 
al, 2011). α-SMA is rapidly incorporated into actin 
stress fibres, which results in an increased capacity of 
myofibroblasts to generate contractile forces (Sandbo 
and Dulin, 2011). Myofibroblasts are modified 
fibroblasts, which contract wounds and result in 

Figure 1. Overview on how micromechanical forces regulate cell behaviour by 
mechanotransduction pathways and in what way formation of ‘dead space’ and  
cellular changes affect wound healing.
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decreased surface scar tissue development (Sandbo 
and Dulin, 2011). 

In chronic wounds, higher numbers of 
myofibroblasts have been observed compared 
to healing wounds, despite the lack of sufficient 
wound closure (Schwarz et al, 2013). An in vitro 
investigation showed that fibroblast migration 
and proliferation were decreased in a non-healing 
wound group, compared to a healing wound group 
(Schwarz et al, 2013). This finding seems unexpected 
because myofibroblasts are mostly linked to the late 
proliferative phase (Reinke and Sorg, 2012).

The transformation of fibroblasts into 
myofibroblasts plays an important role in promotion 
of wound contraction and healing by producing 
ECM components (such as collagen). In physiological 
wound repair, this happens in the late proliferative 
phase. However, the chronic wound by definition is 
stuck in the inflammatory phase, where no deposition 
of ECM takes place. It could be that fibroblasts 
accumulate, become myofibroblasts, but cannot 
comply with their physiological task due to the 
inflammatory environment (everything is destroyed 
as soon as it’s been build) and the intracellular changes 
(senescence, reduced synthesis).

Aging significantly enhances the stiffness of 
fibroblasts, owing to a shift in the degree of actin 
polymerisation favouring the filamentous form 
(Schulze et al, 2010). This results in both an age-
associated loss of cell flexibility and an impairment 
of cell motility. It is also known that aged fibroblasts 
have a decreased proliferation rate. In addition, 
in vitro experiments have demonstrated that 
senescent fibroblasts isolated from chronic 
wounds exhibit a reduced migratory capacity 
after stimulation with mesenchymal stem cells 
(Rodriguez-Menocal et al, 2012). 

Bone marrow-derived mesenchymal stem 
cells of patients with chronic wounds also 
exhibit defects in provoking fibroblast migration, 
although it is not known why. However, it is 
known that mesenchymal stem cells from older 
donors possess a distinctly different morphology 
compared to young people, show signs of oxidative 
damage, and DNA-methylation changes affect cell 
differentiation and decrease proliferation in vitro 
(Kapetanaki et al, 2013). 

As mesenchymal stem cells can modify 
their activities and functions depending on the 

biomolecular context (Jackson et al, 2012), it 
is not surprising that mesenchymal stem cells 
exhibit mechanosensitivity. Observations suggest 
that cytoskeleton structure and cell tension 
are vital regulators of mesenchymal stem cells 
survival, self-renewal and differentiation (Wang 
and Li, 2010; Sun and Fu, 2013). 

mechanotherapy for induction of  
cell proliferation
Wound microdeformations induce cellular 
proliferation (Lancerotto et al, 2012) and migration 
(Borgquist et al, 2010). Such mechanical strain can 
be applied by NPWT using highly porous interface 
materials (Borgquist et al, 2010). During NPWT 
application, small tissue blebs (termed ‘tissue 
mushrooms’) form and extend into the pores of 
the dressing. These tissue mushrooms convey the 
shearing strains at the wound-dressing interface 
(Borgquist et al, 2010). NPWT also effectively removes 
fluid, which may exert additive mechanical strain 
owing to hydrostatic pressure gradients and fluid 
shear forces (Lu et al, 2011). 

A wide variety of molecular responses to 
NPWT have been observed, such as changes in ion 
concentration and permeability of membrane ion 
channels, release of second messengers, stimulation 
of molecular pathways, and alterations in gene 
expression (Silver and Siperko, 2003; Borgquist et 
al, 2010). A study by Saxena et al (2004) showed that 
most elements stretched by NPWT underwent 
deformations of 5–20% strain. This is comparable to 
in vitro strain levels, which were found to endorse cell 
proliferation. 

Lu et al (2011) demonstrated an increase in 
fibroblast proliferation and gene expression of 
COL1A1, α-SMA, bFGF, and TGFβ1 by NPWT. 
Lavery et al (2008) showed that under NPWT, 
the wound area was 2.5 times more likely to be 
decreased within one week in comparison to standard 
moist wound therapy. In addition, NPWT induces 
neovascularisation; most likely by a combination of 
direct effects of mechanical forces on pre-existing 
blood vessels and the establishment of hypoxia and 
vascular endothelial growth factor gradients (Erba 
et al, 2011). 

The porosity of the polyurethane foam chosen for 
NPWT plays a significant role in mechanotherapy 
during wound healing. Larger pore sizes induce 

“The transformation 
of fibroblasts into 
myofibroblasts plays 
an important role 
in promotion of 
wound contraction 
and healing 
by producing 
extracellular matrix 
components.”
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bigger wound bed deformations, resulting in thicker 
granulation tissue and greater induction of contractile 
myofibroblasts (Heit et al, 2012). Interestingly, 
microdeformations of the wound bed surface have 
been observed when wounds were treated with foam 
or gauze at atmospheric pressure, most likely because 
the sponge struts of the foam and the threads of the 
gauze cause imprints in the underlying wound bed 
tissue even without the application of NPWT (Saxena 
et al, 2004; Borgquist et al, 2010). 

However, if close contact of the dressing to the 
tissue was not achieved, no significant granulation 
was observed (Saxena et al, 2004). This is in 
accordance with the clinical demand to ensure a 
close association of the applied dressing to the wound 
bed (Cutting et al, 2009) to avoid the formation of 
‘dead space’ (Wiegand and White, 2013). To test 
this hypothesis, microfabrication techniques have 
been used to develop adhering dressings capable 
of inducing controlled and distributed tissue 
microdeformation (Kane et al, 2010).

Microfabrication designates the construction 
process of miniature structures at micrometer scales 
and smaller. Initially, they were used for fabrication of 
electronic circuits. Nowadays these methods are also 
used in cell biology and microbiology to build systems 
and structures at micron or submicron scales that 
make it possible to manipulate individual cells and 
their immediate extracellular environments. 

In addition, it has been found that stimulation of 
the hypoxia pathway using interference RNA — a 
natural mechanism for silencing gene expression — 
or other gene therapy methods mimic the effects of 
mechanical forces. This pathway has been shown 
to be part of the biological responses to tissue 
deformation and micromechanical strains (Saxena 
et al, 2007). These findings might enable the design 
of clinical therapies, which rely on pharmaceutical 
intervention, rather than exposing the patient to 
mechanical treatments that can have negative effects, 
such as wound separation and wound pain (Wiegand 
and White, 2013).

the mechanical role of the ecm
The ECM is a dynamic, mobile and multifunctional 
regulator of cellular behaviour (Schwarz and Bischofs, 
2005; Susilo et al, 2010; Huang et al, 2013). Cells 
require a number of factors for tissue organisation 
and maintenance. These include biochemical signals, 

such as cytokines and ECM proteins; topographical 
information, such as cell orientation and ECM fibre 
organisation; and mechanical qualities, such as fibre 
elasticity and substrate stiffness. 

Fibroblasts are known to stiffen their cytoplasm 
while migrating into a wound (Kole et al, 2005). 
Hence, cells may use actively generated internal 
forces to explore the environment termed ‘active 
mechanosensing’. This enables them to steer through 
the ECM according to its mechanical resistance, a 
process called ‘mechanotaxis’, (Schwarz and Bischofs, 
2005). Fibroblasts also prefer to migrate towards more 
rigid or strained substrates (Schwarz and Bischofs, 
2005). This phenomenon is most likely necessary 
because soluble growth factors and attachment 
to ECM proteins, although indispensable, are not 
enough to stimulate cell proliferation (Huang and 
Ingber, 1999), and progression through the cell cycle 
needs a suitable physical context to respond to these 
two chemical stimuli (Saxena et al, 2004). In chronic 
wounds, these structural requirements are often 
lacking owing to the degradation of the ECM. Hence, 
the scaffold on which cells normally stretch and 
proliferate is absent. 

The term ‘dead space’ describes a void within a 
viscus, or between the wound bed and its dressing 
or tissue flaps (Cutting et al, 2009), formed by the 
absence of ECM and accumulation of wound fluid. 
Where dead space exists, micromechanical stimuli 
cannot be transferred. Wound failure in laparotomy 
has been linked with early fascial separation forming 
a dead space. 

Culbertson et al (2011) suggested that the 
decreased tension causes the loss of stimulatory 
mechanical signals necessary for fibroblast 
proliferation, alignment and contractile function. As 
a consequence, this often leads to hernia formation 
(Culbertson et al, 2011). In accordance, prophylactic 
muscle flaps in vascular surgery, which are specifically 
aimed to avoid the creation of dead space, have been 
shown to improve healing outcomes (Fischer et al, 
2012). In addition, neutrophils and macrophages 
cannot invade this area and, therefore, microbial 
contamination may proceed to wound infection 
(Wiegand and White, 2013).

concluSion
Mechanical forces are able to affect wound 
healing through changes in cell proliferation rates, 
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cell differentiation, release of cytokines, and 
stimulation of matrix protein secretion. Cells 
isolated from chronic wounds of older patients 
demonstrate distinct alterations in phenotype 
and behaviour (e.g. mesenchymal stem cells fail 
to induce cell migration, and fibroblasts do not 
proliferate or secrete new ECM components). 
This might be owing to the absence of structural 
requirements for propagation of mechanical cues in 
chronic wounds as a result of ‘dead space’ forming. 

There is, therefore, a clinical indication for 
wound-related research in this area. In simple 
practical terms, closely adhering dressings that 
maintain intimate contact with the wound bed may 
help to avoid the creation of dead space. It can also 
be assumed that application of micromechanical 
forces to chronic wounds in vivo, either by NPWT 
or specially designed dressings, will promote 
wound healing by induction of appropriate 
microdeformation. Wuk
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