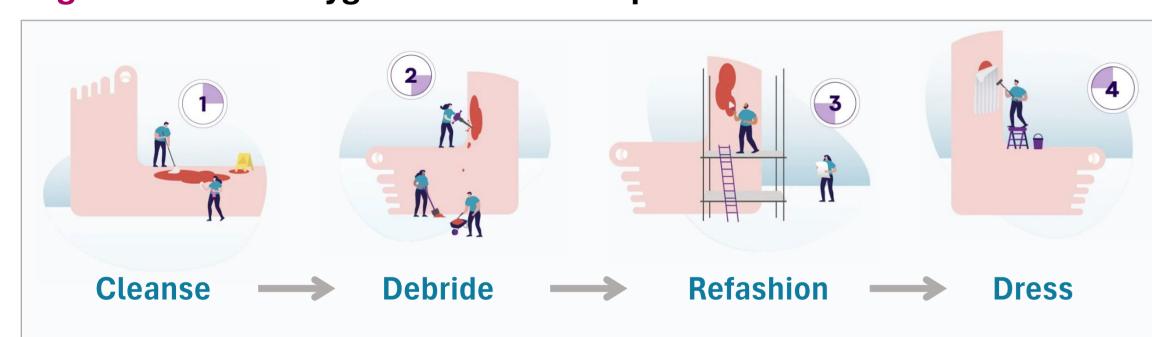
Improving outcomes for patients with hard-to-heal wounds following adoption of Wound Hygiene: real-world evidence


Rachel Torkington-Stokes¹, Kate Moran², Diego Sevilla Martinez³, Deborah Cesura Granara⁴, Daniel Gary Metcalf¹

¹Convatec Ltd., Deeside, UK; ²Altnagelvin Area Hospital, Londonderry, UK; ³Centro de Salud Just Ramírez, Valencia, Spain; ⁴Villa Scassi Hospital and ASL3 Network, Liguria, Italy

Background

- Hard-to-heal wounds are a major challenge to healthcare systems globally¹:
- Estimated prevalence of 2.21 per 1,000 population²
- Associated with reduced patient health-related quality of life and substantial economic burden^{3,4}
- Bioburden has long been implicated in hard-to-heal wounds⁵:
- At least 78% of hard-to-heal wounds estimated to have biofilm⁶
- Biofilm can protect microorganisms from antibiotics, antiseptics and the host immune response⁵
- Wound Hygiene is 4-step standardized approach to biofilm management and wound care (**Figure 1**) $^{7-9}$:
- Developed by an international panel of wound care specialists
- Allows biofilm-based wound care to administered early, safely, and consistently in any clinical setting

Figure 1. Wound Hygiene: antibiofilm protocol of care

Objective

To evaluate the impact of Wound Hygiene (incorporating an advanced antibiofilm gelling fibre dressing*) on hard-to-heal wounds

Methods

- A prospective, real-world analysis of hard-to-heal wounds managed with Wound Hygiene
- Patients were enrolled from different wound care settings across Spain, Italy, the United Kingdom, Poland, the Netherlands, and Portugal
- Between 01 April 2021 and 31 December 2022, patients were managed with Wound Hygiene (incorporating a CMC dressing containing ionic silver, EDTA and BEC*) for approximately 4 weeks or as deemed clinically appropriate
- The primary endpoint was change in wound volume from baseline to final assessment
- Secondary endpoints were qualitative changes in exudate levels, suspected biofilm, and signs of local infection

Results

- A total of 693 wounds were included in the analysis (**Table 1** and **Table 2**)
- After a median treatment time of 31 days, there was a statistically significant 80% mean reduction in baseline wound volume (p<0.001) (**Table 3** and **Figure 1**)
- At the final assessment, most wounds had improved (69%) or healed (25%), and only a small proportion were deteriorating (22% \rightarrow 2%) or static (44% \rightarrow 3%) (**Figure 2**)
- There was an increase in the proportion of wounds with no (3% \rightarrow 34%) and low (26% \rightarrow 40%) exudate (p<0.001) (**Figure 3**)
- There was an increase in the proportion of wounds without suspected biofilm (12% \rightarrow 72%) and without infection (45% \rightarrow 89%) (**Figure 4** and **Figure 5**) (p<0.001)

Wounds

Table 1. Patient demographics and

	wounds (N=693)		
Patient age, median (range)	74 (18–101)		
Sex, n (%)			
Male	310 (45)		
Female	380 (55)		
Missing	3 (0.4)		
Country, n (%)			
Italy	197 (28)		
Spain	178 (26)		
United Kingdom	144 (21)		
Poland	116 (17)		
The Netherlands	52 (8)		
Portugal	6 (1)		
HCP, n (%)			
General nurse	349 (50)		
Nurse practitioner	260 (38)		
Physician	36 (5)		
Podiatrist	27 (4)		
Healthcare assistant	8 (1)		
Other	7 (1)		
Missing	6 (1)		
Clinical setting, n (%)			
Patient home	190 (27)		
Community clinic	186 (27)		
Outpatient clinic	124 (18)		
Hospital	98 (14)		
Post-acute facility	62 (9)		
Care home	20 (3)		
Physician office	13 (2)		
Other	7 (1)		
Missing	1 (0.1)		

Table 2. Baseline wound characteristics

	(N=693)		
Wound type, n (%)			
Leg ulcer	272 (39)		
Venous	183 (26)		
Arterial	11 (2)		
Mixed	50 (7)		
Unknown	28 (4)		
Pressure ulcer/injury	120 (17)		
Diabetic foot ulcer	66 (10)		
Surgical wound	59 (9)		
Traumatic wound	81 (12)		
Cavity wound	16 (2)		
Malignant wound	4 (1)		
Moisture lesion	4 (1)		
Weeping oedema	4 (1)		
Skin tear	33 (5)		
Other	34 (5)		
Wound duration, n (%)			
< 7 days	56 (8)		
7–14 days	47 (7)		
2–4 weeks	92 (13)		
4–8 weeks	95 (14)		
2–3 months	95 (14)		
3–6 months	88 (13)		
6–12 months	74 (11)		
> 12 months	143 (21)		
Missing data	3 (0.4)		
Additional therapies, n (%)			
Antibiotics	229 (33)		
Compression bandaging	203 (29)		
Analgesics	149 (22)		
None	131 (19)		
Other	111 (16)		
Compression hosiery	64 (9)		
Equipment (e.g., pressure relieving / offloading device)	61 (9)		

Wounds

Table 3. Change in wound volume (cm³)

	Baseline	Final assessment	Change from baseline*	Percentage reduction from baseline [†]	
	n = 661	n = 658	n = 646	n =501	
Mean (SD)	57.8 (184.0)	17.2 (187.5)	-41.3 (243.6)	79.8 (31.0)	
Median	4.5	0.0	-3.0	95.7	
nterquartile range	0.1, 25.0	0.0, 1.80	-20.4, 0.0	70.0, 100.0	
Range	0.0, 2100.0	0.0, 4500.0	-1929.0, 4500.0	-100.0, 100.0	
95% CI [‡]	_	_	-60.1, -22.5	77.1, 82.6	
P value§	_	_	< 0.001	< 0.001	

Figure 1. Percentage reduction in wound volume

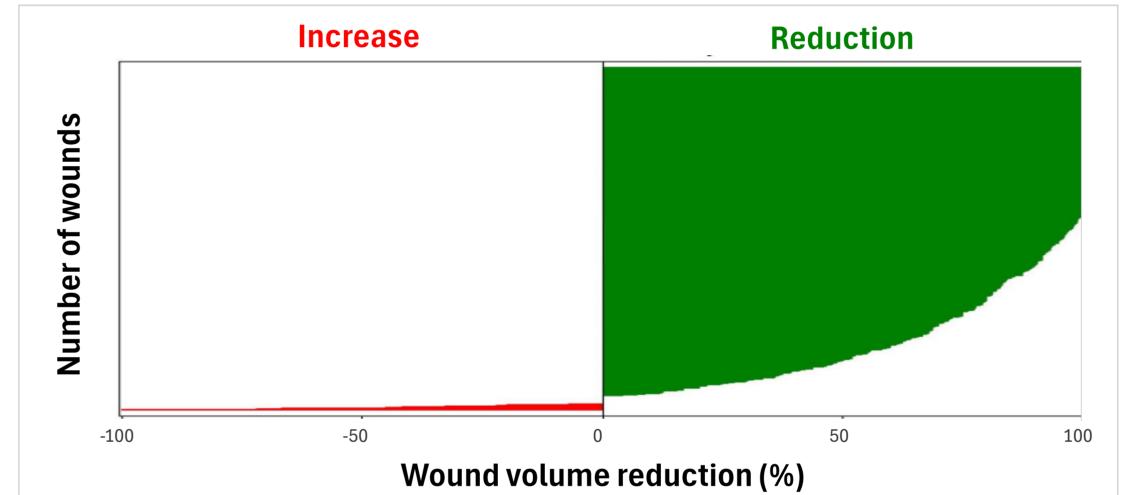


Figure 2. Wound status

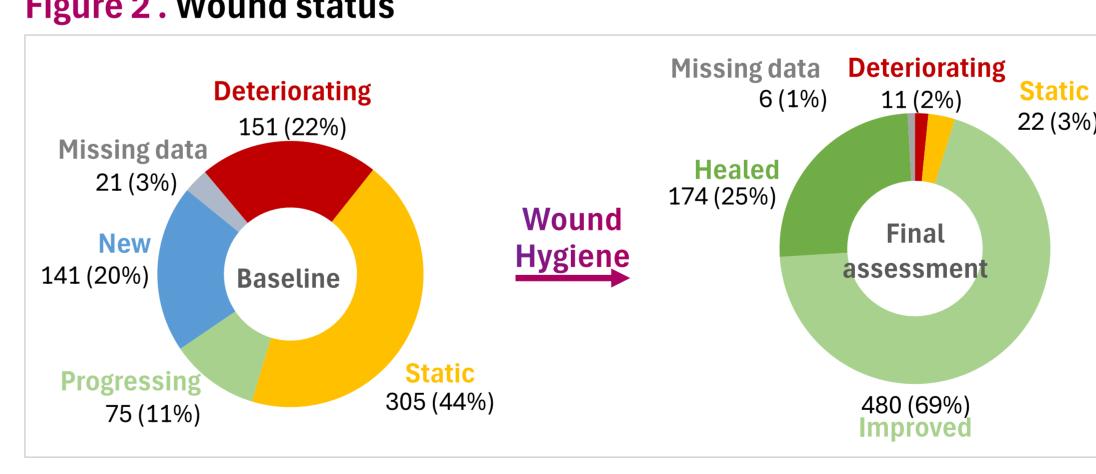


Figure 3. Wound exudate

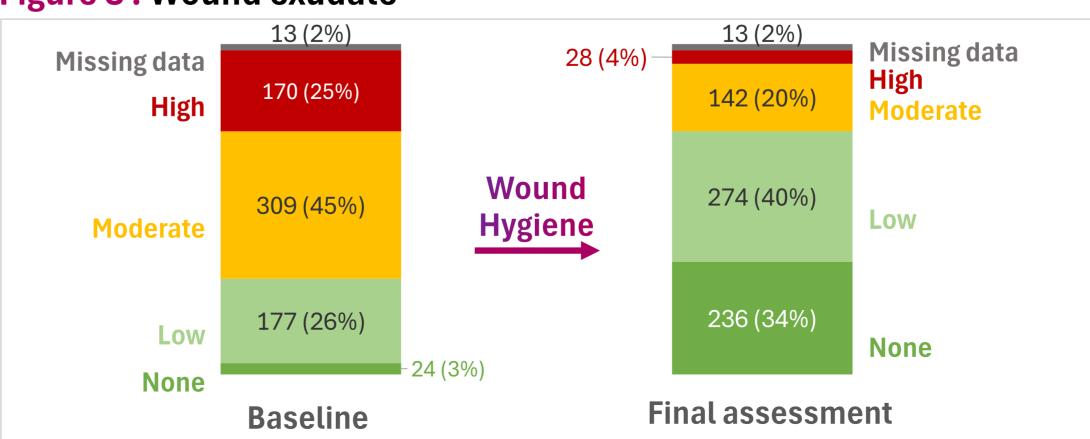


Figure 4. Suspected biofilm¹⁰

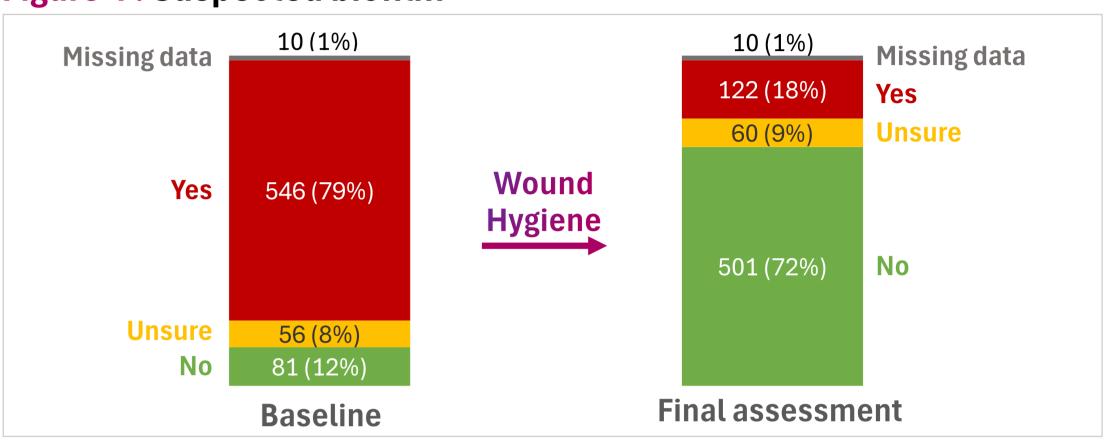


Figure 5. Local infection 10

Discussion

- Wound Hygiene addresses a key local barrier to healing (i.e., biofilm) and can help minimize variation in biofilm-based wound care across different clinical settings
- Incorporation of an advanced antimicrobial gelling fiber dressing dressing may further facilitate wound healing by helping to reduce overall bioburden
- From participating HCPs responses (n=693), nearly all would routinely adopt Wound Hygiene in clinical practice (99%) and would continue to use (97%) or recommend (99%) the antibiofilm dressing

Conclusion

Management of hard-to-heal wounds with Wound Hygiene (incorporating an advanced antibiofilm gelling fibre dressing*) was associated with statistically significant reductions in wound volume and qualitative reductions in exudate, suspected biofilm, local and infection

References & Footnotes

1. Rice JB et al. *Diabetes Care* 2014;37(3):651–658. **2.** Martinengo L et al. *Ann* Epidemiol 2019;29:8–15. 3. Olsson M et al. Wound Repair Regen 2019;27(1):114–125. 4. Chan B et al. J Wound Care 2017;26(Suppl 4):S4-S14. 5. James GA et al. Wound Repair Regen 2008;16(1):37-44. 6. Malone M et al. J Wound Care 2017;26(1):20-25 7. Murphy C et al. J Wound Care 2020;29(Sup3b):S1-S26. 8. Murphy C et al. J Wound Care 2019;28(12):818–822. **9.** Murphy C et al. J Wound Care 2021;30(7):582–590. **10.** Haesler E et al. J Wound Care 2019;28(Sup3b):S4–S12.

*Aquacel® Ag+ Extra™ (Aquacel Ag Advantage in the United States).

bbreviations: CMC: carboxymethylcellulose; BEC: benzethonium chloride: EDTA: ethylenediaminetetraacetic acid; HCP: healthcare professional