# Assessment of the performance characteristics of a new multilayer foam dressing Jordyn Bunker, MSc<sup>1</sup>, Shauna Powell, BSc<sup>1</sup>, Donna Kesteven, MChem<sup>1</sup>

<sup>1</sup>Advanced Wound Care R&D, Convatec Ltd, Deeside, UK

# Introduction

- Effective wound management is essential for promoting healing, p complications, and improving patient outcomes<sup>1</sup>
- Dressings play a pivotal role in this process, serving as the primary interventions for both exuding and non-exuding wounds, as well as prevention of pressure injuries<sup>2</sup>
- The development of an advanced dressing tailored to meet these s needs is imperative to optimize outcomes and enhance patient co quality of life

### **STUDY OBJECTIVE**

To examine the *in vitro* performance characteristics of a new mu foam dressing, A\*, when tested against two competitor dressi and C°.

## Results

### Speed of absorbency

- Dressings A\*, B<sup>†</sup> and C° absorbed all the fluid within the set time of 300s (Figure 2)

### Adhesive strength

### Seven-day fluid handling

• All dressings absorbed similar amounts of fluid; however, the significantly higher moisture vapour transmission rate (MVTR) of Dressing A\* demonstrated its superior fluid handling capacity over 7 days than B  $\dagger$  and C° (p<0.05; Figure 4)<sup>3</sup>

### Figure 2. Comparison of the mean-time taken for 5mls of fluid to be absorbed into the wound contact layer of the dressing.



|                        | Methods                                                                                                                                                                                                                   |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| preventing             | <ul> <li>Three dressings were tested: A*, B<sup>†</sup> and C°</li> </ul>                                                                                                                                                 |
| y<br>s for the         | <ul> <li>The speed of absorbency, defined as the rate at which<br/>coloured saline solution is transmitted through the dr<br/>pores into the dressing's absorbent pad, was assesse<br/>dressings (Figure 1)</li> </ul>    |
| specific<br>omfort and | <ul> <li>The adhesive strength of the dressings was assessed<br/>force required to peel a sample of the adhesive borde<br/>each dressing from a polycarbonate substrate by the 2<br/>Universal Testing Machine</li> </ul> |
| ultilayer<br>ngs, B†   | <ul> <li>Seven-day fluid handling, absorbency and retention to<br/>were carried out following the principles of BS EN 137</li> </ul>                                                                                      |
|                        |                                                                                                                                                                                                                           |

• Dressing A\* resulted in the fastest fluid uptake rate (9.1 seconds), when compared to dressings B<sup>†</sup> (224.3 seconds) and C° (52.8 seconds)<sup>3</sup>

• A significantly stronger force was needed to remove dressing A\* (3.35 N/2.5 cm) from a polycarbonate substrate than dressings B<sup>†</sup> (2.18 N/2.5 cm) and C° (1.60 N/2.5 cm; p<0.001; Figure 3)<sup>3</sup>

Figure 3. Comparison of the force required to peel the



Presented at Wounds UK, 11<sup>th</sup>-13<sup>th</sup> November 2024, Harrogate, UK

h 5ml of ressing ed for all

by the er of Zwick,

esting 726

# Figure 1. Testing set up for speed of absorbency



# Figure 4. Comparison of the fluid handling capabilities of the three dressings tested.

### Discussion

- and C°

- and C°

# CONCLUSION

# **References & Footnotes**



• Using various *in-vitro* test methods, Dressing A\* has been shown to perform better overall than competitors  $B^{\dagger}$  and  $C^{\circ}$ 

• Dressing A\* was able to absorb fluid at a faster rate upon direct contact with the wound fluid compared to Dressings  $B^{\dagger}$  and  $C^{\circ}$ 

• In a clinical setting, this may minimise the time where wound exudate would have contact with healthy skin and therefore, could reduce the risk of further maceration of the wound and peri-wound area

Dressing A\* had a stronger adhesive strength than its competitors B<sup>†</sup>

• Strong adhesive strength supports patient movement, which may prolong wear time, reduce dressing changes and the risk of bacterial contamination that is high with numerous dressing changes<sup>4</sup>

• Dressing A\* had a greater fluid handling capacity across a 7-day wear time compared to its competitors B<sup>†</sup> and C<sup>°</sup>

• The results demonstrated how Dressing A\* may be able to manage the wound fluid exuding from chronic and acute wounds during wear, further reducing the need for dressing changes compared to competitors B<sup>†</sup>

This data shows that Dressing A\* is better equipped at managing and handling wound fluid when compared against its competitors.

1. International consensus. Optimising wellbeing in people living with a wound. An expert working group review. London: *Wounds International* 2012. Available from: http://www.woundsinternational.com 2. Foam Dressings for Wound Healing. Hargis A, et al. *Curr Derm Rep* 2024;13:28-35. Data held on file at Convatec, CTEC, Deeside - AWC-0316b

4. Meuleneire F, Rücknagel H. Soft silicones Made Easy.

Wounds International 2013 (May). Available from:

www.woundsinternational.com

\*ConvaFoam<sup>™</sup>, Convatec, Inc.

<sup>†</sup>Mepilex<sup>®</sup> Border Comfort, Molnlycke, Inc.

°Allevyn™ Gentle Border, Smith & Nephew PLC