Impact of an evidence-based bundle on incontinence associated dermatitis prevalence in hospital patients:

a quasi-experimental translational study

Michelle Barakat-Johnson¹, John Stephenson², Michelle Lai^{1,} Fiona Coyer³

¹University of Sydney, Australia ²University of Huddersfield, UK ³University of Queensland, Australia Corresponding author: John Stephenson, School of Human & Health Sciences, University of Huddersfield, UK. Email: J.Stephenson@hud.ac.uk

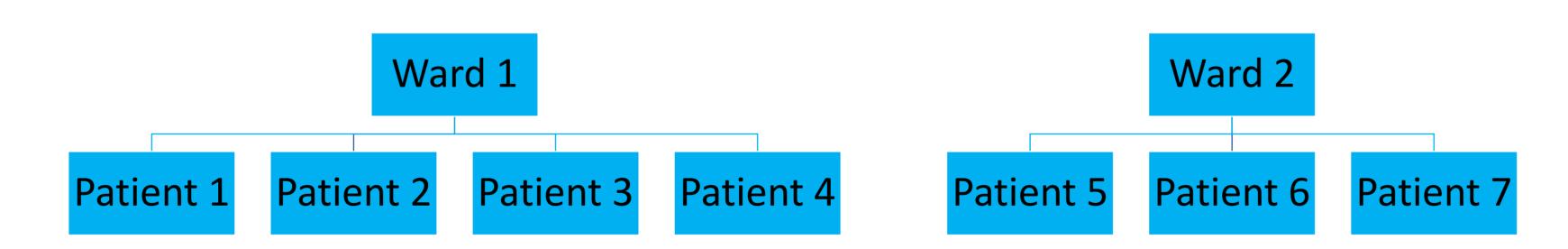
INTRODUCTION

- Incontinence-associated dermatitis (IAD) is a common skin condition caused by faecal/urinary incontinence
- Can result in: reduced QoL, loss of independence, depression, sleep disruption
- Reported prevalence in acute care hospitals of up to 47.5%
- Under-recognised condition: prevalence audits conducted irregularly
- An important neglected clinical problem

SETTING & PARTICIPANTS

- Multisite study: 5 health districts in New South Wales, Australia
- 6 hospitals; 18 participating wards (3 per hospital)
- Specialisms: subacute/rehabilitation medicine, acute geriatrics, palliative care, respiratory/gastroenterology, general medical, surgical, ICU
- Data collected Feb-April 2020 (pre-intervention implementation); July-Sept 2021 (postintervention implementation)

Clinical Audit										Clinical Audit																							
	Pre-Intervention							Intervention						Т	Post-Implementation																		
Oct 2019	Nov Dec	Jan 2020	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan 2021	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan 2022	Feb	Mar	Apr	May	Jun	Jul Jul	2022

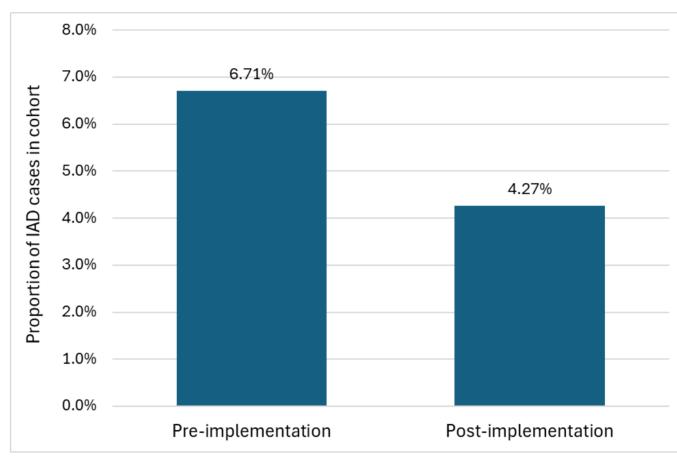

- Final analysis conducted on 694 incontinent patients (1897 patients assessed in total)
 - 343 pre-intervention implementation
 - **351** post-intervention implementation

METHODS

- Quasi-experimental study with historical controls
- Clinical audits involving skin and continence assessments conducted pre-and postimplementation of an evidence-based healthcare bundle to prevent and manage IAD

THE HEATHCARE BUNDLE

- Staff IAD education
- Use of incontinence assessment tools: flow, record and product charts
- Education of patients, family and caregivers
- Development of practice guidelines and categorisation tool
- Implementation of patient skin protection measures
- Multilevel logistic regression analysis conducted on IAD incidence (primary outcome)
- Secondary outcomes of IAD severity and length of hospital stay (LoS) also assessed
- Propensity scoring used to control for confounding variables
 - Ward type, patient mobility, patient age, patient sex, patient outcome (i.e., whether died, discharged or transferred within/between hospitals), length of stay in hospital.
- Hierarchical data (patients clustered within wards)


COHORT CHARACTERISTICS

- Similar age and gender profiles in pre- and post-implementation cohorts
- Higher levels of double incontinence and lower levels of acuity in post-implementation cohort
- Suggesting higher IAD incidence may be expected in post-implementation cohort

Status	Pre-implementation cohort (n=343)	Post-implementation cohort (n=351)
Double incontinence	173 (50.4%)	203 (57.8%)
Mobility Full/partial mobility Bed-bound	225 (65.6%) 118 (34.4%)	203 (45.8%) 148 (42.2%)
Age (years) (Mean (SD))	80.2 (11.7)	79.5 (11.5)
Sex Female Male	187 (54.5%) 156 (45.5%)	188 (53.6%) 163 (46.4%)

RESULTS

- 23 IAD cases in 343 patients in pre-intervention cohort (6.71%)
- 15 IAD cases in 351 patients in post-intervention cohort (4.27%)
- Adjusted odds ratio for IAD = 0.546 (rates about halved in post-intervention cohort)
- Higher IAD incidence also associated with double incontinence (1.95 adjusted odds ratio)

Variable	<i>p</i> -value	OR	95% CI for OR
Intervention status: Post-intervention (reference = pre-intervention)	0.086	0.546	(0.274, 1.09)
Incontinence status: More than one type of incontinence (reference = singly incontinent)	0.064	1.95	(0.962, 3.96)
Propensity score on covariates	0.392	1.22	(0.774, 1.93)

- IAD severity similar in both cohorts: most cases category 1A (mildest form)
- LoS for IAD patients significantly longer pre-implementation (44.5 days (SD 34.2 days)) than post-implementation (24.6 days (SD 18.2 days)); p=0.03
- LoS in all patients longer in post-implementation cohort

CONCLUSIONS

- Evidence-based healthcare bundle substantively reduces IAD incidence in large cohort of hospital patients with incontinence
- Length of hospital stay significantly reduced following implementation of intervention
- Improvement in outcomes despite higher acuity levels in post-intervention cohort

REFERENCES

 Barakat-Johnson et al. (2024). Impact of an evidence-based bundle on incontinence associated dermatitis prevalence in hospital patients: A quasi-experimental translational study. International Wound Journal. 2024;21:e14936. https://doi.org/10.1111/iwj.14936

