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Silver nanoparticles: an overview of  
scientific toxicity and safety data and  

introduction of a new dressing, Venus Ag 

Nanoparticles are clusters of atoms in the 
size range of 1–100 nm (Williams, 2008, 
Wong, 2010; Ge et al, 2014) and show 

unique physical, chemical and biological properties 
compared with their macro-scaled counterparts 
due to their high surface-to-volume ratio (Li et al, 
2001). Nanomaterials are classified according to 
their dimensions, morphology, state and chemical 
composition (Gleiter, 2000), and they can be further 
divided into four sectors based on zero, one, two or 
three dimensions. For example, nanorods, quantum 
dots, nanowires and nanotubes (Saleh, 2020).

Silver nanoparticles (AgNPs) are the most 
widely exploited and have been incorporated 
into a range of wound care applications including 
composite fibres, textiles and wound dressings. 
(Caro et al, 2016; Balanga et al, 2020; Tremiliosi 
et al, 2020). There are several common methods 
of producing silver nanoparticles, these include 
mechanical milling, laser ablation (Zhao et al, 
2006), sputtering, vapour deposition (Dunn 
and Edwards-Jones, 2004) and other chemical 
processes (Pal et al, 2007; Almatroudi, 2020). The 
various AgNPs produced are usually characterised 

using varying analytical methods such as Surface-
Enhanced Raman scattering (Elechiguerra et al, 
2005), high thermal and electrical conductivity, 
catalytic activity (Ribeiro et al, 2014) and non-linear 
optical behaviour. The physical, biochemical and 
antimicrobial properties vary depending upon the 
size (Sotiriou et al, 2010), shape, surface charge (El 
Badawy et al, 2011), coating (Yang et al, 2012), and 
solubility (Wu et al, 2008) and these differences 
confer different optical, magnetic and catalytic 
properties. In antimicrobial assays, Pal et al (2007), 
showed that truncated triangular AgNPs displayed 
the strongest antimicrobial action, compared with 
spherical and rod-shaped nanoparticles and the 
silver ions from AgNO3. 

AgNPs are incorporated into wound dressings, 
primarily for their antimicrobial properties, but 
they can also have modulatory effects (through 
inhibition of matrix metalloproteases MMPs) on 
wound healing (You et al, 2017). The level of AgNPs 
within the dressing has to be optimised so that there 
is sufficient to excert antimicrobial activity against 
the microbial cell yet, simultaneously, be safe for 
use against the eucaryotic cell (the host cell) within 
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Box 1. Mechanism of action of silver ions

 �In bacterial cells, Ag+ inactivates respiratory and intracellular enzymes by reacting with sulphydral 
groups (Chappell and Grenville, 1954). Consequently, processes such as cell respiration, ion 
transport, (Marambio-Jones and Van Hoek, 2010), ATP production and DNA replication (Feng et 
al, 2000) are affected
 �Silver ions interchelate with DNA, binding specifically with GC groups (Rosenkranz and 
Rosenkranz, 1972; Modak and Fox, 1973; Feng et al, 2000), so disrupts replication and 
reproduction
 �Interaction with sulphur-containing membrane proteins cause disruption in the membrane 
structure. This can lead to increased membrane permeability and allow more silver to enter 
the cells (either ionic or nanoparticle form) and could possibly cause cell lysis in some cases. 
AgNPs have a large surface area-to-volume ratio and provide good contact with the bacterial 
cell membrane, allowing attachment and subsequent penetration of the particle. Once inside, 
sustained release of the Ag+ ions enhances bactericidal activity (Bryaskova et al, 2011).  

the wound bed. This review will address some of 
the concerns around AgNPs and review the current 
health and safety data associated with them.

ANTIMICROBIAL EFFECT OF AGNPS ON 
MICROBIAL CELLS
Different oxidation states of silver exist, Ag+, Ag++ 
and, Ag+++. However, singly charged silver, Ag+, is 
considered the most biologically active with its 
availability dependent upon the solubility of the 
salt used (Richards et al, 1991). Ag++ and Ag+++ 
show some antimicrobial activity but are more 
likely to form insoluble complexes and be rapidly 
inactivated by the proteins, phosphates, sulphates 
and chlorides frequently found in tissues and 
wound exudate (Khansa et al, 2019). AgNPs 
and subsequently Ag+ has a broad spectrum of 
activity and acts on multiple sites within the 
bacterial cell (Box  1) (Feng et al, 2000; Dibrov 
et al, 2002), and inhibits the growth of bacteria, 
viruses and yeasts at concentrations between 
8–80 parts per million  (ppm) (Liao et al, 2019). 
AgNPs interact with structural proteins on the 
surface of extracellular viruses inhibiting their 
entry to cells at an early stage, by either damaging 
proteins or preventing viral attachment (Galdiero 
et al, 2011: Jeremiah et al, 2020). 

The addition of AgNPs to dressings allows a 
continuous slow release of silver ions from the 
nanoparticles, which can extend the use of dressings 
over several days. This sustained release of silver 
ions allows levels to be maintained a therapeutic 
concentration of >30ppm (Khansa et al, 2019). 
AgNPs have now been incorporated into a variety 

of different carrier dressings from fibres to hydrogels 
(Singh et al, 2021) and their broad-spectrum activity 
against a wide range of wound pathogens, including 
multidrug (antibiotic) resistant (MDR) strains, make 
their use an excellent alternative to other antiseptics 
and antibiotics. 

ANTI-INFLAMMATORY EFFECT OF 
AGNPS
The anti-inflammatory effect of AgNPs has been 
extensively assessed using a variety of in  vitro (cell 
lines e.g. fibroblasts and keratinocytes) and in 
vivo (murine, guinea pig, rabbit and pig) models 
and show a positive effect on wound healing 
(Nadworthy et al, 2008; Hebeish et al, 2014; 
Parnsamut et al, 2015; Hartmann et al, 2016; You 
et al, 2017; Nešporová et al, 2020).AgNP’s can bind 
to metallothioneins, cysteine rich proteins found in 
the host cell, and this contributes to tissue repair.
(Lansdown, 2006). Dressings such as Acticoat 
inhibit or sequester matrix metalloproteinases 
(MMP) and modulate the immune system by their 
removal from the wound bed (Wright et al, 2002; 
Walker et al, 2007; Nešporová et al, 2020). Using a 
porcine model, healing, inflammatory response, 
restoration of the epithelium and blood vessel and 
collagen formation were compared up to 15 days 
post‐wounding using Acticoat and a polyurethane 
film control dressing. No difference was found 
in the rate of healing, however, the epithelium 
of the Acticoat-treated wounds more closely 
resembled normal epithelium and contained a 
higher proportion of mature blood vessels, and 
collagen deposition. This showed that Acticoat has a 
beneficial effect on healing compared to the controls 
(Hartmann et al, 2016). 

A 1% w/w AgNP cream suppressed the 
expression of interleukin-2 and tumour necrosis 
factor α (TNFα), in a mouse model (Bhol et al, 
2004) and a topical AgNP dressing suppressed 
inflammatory cytokines and induced apoptosis in 
inflammatory cells in mice with allergic contact 
dermatitis (Bhol and Schechter, 2005). In patients, 
toxic epidermal necrolysis and Stevens-Johnson 
Syndrome showed marked improvement when 
treated with a topical nanocrystalline silver dressing 
(Acticoat) (Asz et al, 2006; Dalli et al, 2007). 

The inflammatory response associated with the 
topical delivery of AgNPs was further investigated 
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by Tian et al using a mouse model. The authors 
analysed the expression patterns of IL-6, TGF-β1, 
IL-10, VEGF, and IFN-γ using a quantitative real-
time RT-PCR and confirmed modulation of the 
cytokine profile by AgNPs. They also demonstrated 
reduced scar appearance in the presence of 
AgNP and supported the beneficial application of 
AgNPs in wound care (Tian et al, 2007). You et al 
(2017) showed that at a concentration of 10ppm, 
AgNPs promoted the migration of fibroblasts, and 
expressed higher levels of the marker α-smooth 
muscle actin (α-SMA), indicating the capability of 
AgNPs to transform fibroblasts into myofibroblasts 
and to speed the wound healing process. They 
concluded that AgNPs of certain size and 
concentration could represent a valuable tool to 
maintain a reasonable activation of macrophages 
thus modulating the local inflammatory response 
(You et al, 2017). 

Therefore, in vitro studies imply the use of 
AgNP dressings could have a bi-functional effect, 
depending upon the AgNP incorporated into the 
dressing: toxic to microbes yet modulatory to the 
immune system. 

TOXICITY OF SILVER NANOPARTICLES
Silver has been used topically for over 50 years in 
burns and in recent years in chronic wounds, and 
the reported cases of silver toxicity are limited. 
Reports of localised argyria (a result of silver 
toxicity that turns skin, eyes, internal organs, 
nails, and gums a blue-gray colour) following 
application of silver sulphadiazine have been 
reported (Payne et al, 1992; Tomi et al, 2004; 
Trop et al, 2006) but since the controlled usage 
of silver in dressings these reports are limited 
(McCague et al, 2016). When used topically, 
silver ions are absorbed across the skin and enter 
the systemic circulation as a protein complex to 
be eliminated by the liver and kidneys. If levels 
of silver are too high, then systemic toxicity may 
manifest, with diarrhoea, stomach irritation, 
decreased respiration and damage to the liver and 
kidneys (Lansdown, 2006). A study undertaken 
by Vlachou and colleagues (2007), on 30 burn 
patients, showed an increase in silver blood 
levels when treated with an AgNP dressing. The 
median of 56.8mg/L correlated with the size of 
the burn and length of exposure to silver and 

levels returned to to normal (1–10mg/L) within six 
months post treatment. No long-term effects were 
noted (Vlachou et al, 2007). 

Most studies of AgNP’s toxicity to human 
cells are based on in vitro cellular experiments 
using silver ions and relatively short-term animal 
experiments, so interpretation of any results with 
real-life needs caution (Asghari et al, 2012; 2016: 
Atiyeh et al, 2007; Poon and Burd, 2004; Skebo et al, 
2007). It is therefore important that in vitro assays 
are interpreted carefully, as results of effects on 
single parameters may not reflect the interaction 
in a complex wound environment that has 
complex architecture in the epidermis and dermis 
(Lansdown and Williams, 2004). 

Dissolution of AgNPs into silver ions is the 
main factor leading to toxicity in test systems 
and this has been repeatedly shown, indicating 
the toxicity arises from ionic silver rather than 
the intrinsic property of AgNPs (Trop et al, 2006; 
Aranout et al, 2012). AgNPs have reduced activity 
when ion formation is removed (Xiu et al, 2012). 
When both AgNPs and ionic silver were tested 
for antibacterial efficacy under strict anaerobic 
conditions, it was shown that ionic silver was more 
effective than AgNPs, supporting the hypothesis 
that the primary toxic action of nanoparticles is 
from ion release (Xiu et al, 2012) Prevention of 
ion formation by the addition of the anti-oxidant, 
N-acetylcysteine, to AgNPs was shown to inhibit 
antimicrobial activity (Kim et al, 2007; 2009), 
suggesting that bioactivity arises from the ionic 
silver released by nanoparticles in an oxygenated 
environment. Further studies on dissolution of 
AgNPs in ultrapure water suggested that toxicity 
to bacteria increased with a higher dissolution 
rate and this was proportional to the specific 
surface area of the nanoparticle (Helmlinger et al, 
2016). The rate and extent of dissolution in  vitro 
is determined by the chemical composition of the 
media; the temperature; pH; the concentration 
of nanoparticles in solution; the size of the 
nanoparticle and the coating of the nanoparticle 
(Liu and Hurt, 2010; Ma et al, 2011). Whether this 
also happens in vivo is not known and NIOSH (the 
National Institute for Occupational Safety and 
Health) raised concerns about the significant lack 
of technical knowledge pertaining to the mode 
of action and long-term effects of AgNPs in vivo 
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(NIOSH, 2021). It has been suggested that AgNPs 
might act as a “Trojan horse”, bypassing typical 
barriers based on size and then releasing high 
levels of silver ions at the site of potential damage 
(Park et al, 2010; Lubick, 2011).

AgNPs are 1–100nm in size (over 100X larger 
than a silver ion, approxima 115pm equivalent to 
0.115nm), therefore concern over the size of the 
nanoparticle and ability to overcome the body’s 
normal protective barrier must be based on the 
unique properties of AgNPs compared to the 
normal ionic silver species (Nasterlack, 2008; 
Schulte et al, 2008). 

In 2009, Tang et al showed, in rats, that AgNPs 
were able to enter the bloodstream and cross the 
blood-brain barrier, where they induced damage 
to the barrier membrane and subsequently caused 
astrocyte swelling and neurodegeneration in the 
brain. This paper is regularly cited in the case for 
AgNPs’ toxicity. However, several issues were raised 
on the design of the study, namely: the AgNPs were 
administered into rat models by subcutaneous 
injection rather than allowing normal levels of 
elution from a wound dressing. The quantity 
injected into each rat was 62.8mg/kg — over 12,500 
times the maximum dose recommended by the 
FDA (5μg/kg/day). Therefore, it was unsurprising 
that such a large dose caused damage. A study 
into accumulation of silver in the liver, spleen 
and kidneys was undertaken on rats and it was 
shown that a dose of <10mg/kg AgNPs was safe for 
biomedical application and there were no observed 
side-effects. However, a higher dose >20mg/kg was 
toxic (Tiwari et al, 2011). 

In human neutrophils, AgNPs were shown 
to induce apoptosis and act as an inhibitor 
of protein synthesis (Poirier et al, 2014). An 
interaction with mitochondria and induction 
of the apoptosis pathway via the production of 
reactive oxygen species, which leads to cell death 
had previously been demonstrated (Hsin et al, 
2008). Reports of cytotoxicity to several cell types, 
including human peripheral blood mononuclear 
cells, human alveolar epithelial cell line, human 
alveolar macrophage cell line, neuroendocrine 
cells, rat liver cell line and mouse germline cells, 
continues to confound the problem (Shin et al, 
2007; Greulich et al, 2011: Pratsinis et al, 2013). It 
is suggested that AgNPs are ionized in the cells, 

leading to activation of ion channels and changes 
in the permeability of the cell membrane to both 
potassium and sodium studies cite organ toxicity 
after administration of AgNPs; with the liver, lungs 
and brain affected but whether this is following 
dissolution and release of silver ions is not 
elucidated (Ahamed et al, 2010). Hepatoxicity may 
be due to thiol-rich proteins in the liver, such as 
glutathione, which may act as a reservoir for silver 
(Knetsch and Koole, 2011).

Translocation of AgNPs from wound dressings 
into deeper tissue, brain and other organs is unlikely 
from lower extremities (as in chronic wounds) as 
low-pressure venous flow and gravity to reduce 
movement towards the barrier is small (Tiwari et al, 
2011). 

Using a transmission electron microscope, it was 
shown that AgNPs can enter the stratum corneum 
and upper epidermis, tending to accumulate 
near the hair follicles. Using a static model, it 
was shown that AgNPs (below 30nm diameter) 
passively penetrated the skin (Tinkle et al, 2003). 
Using Polyvinylpyrrolidone (PVP)-capped AgNPs, 
Larese et al (2009) demonstrated that there was a 
5-fold increase of AgNPs transversing abraded skin 
compared with intact skin. A recent study using 
ICP-MS detected silver nanoparticles transferring 
across porcine membranes, demonstrated the 
potential for toxicity if accumulation occurred 
within local or adjacent tissues (Zanoni et al, 
2021). However, the concentration of silver ions in 
dressings, and  the subsequent dose eluted from the 
dressings required to achieve any organ toxicity is 
still not clear. Therefore, it is important to establish 
the degree of migration of nanoparticles from a 
dermal wound, the ability of the body to remove 
nanoparticles translocated from the wound site, 
and the resultant levels of silver ions before reaching 
firm conclusions. 

Further studies of dermal toxicity are of 
paramount importance going forward if AgNPs 
are to be used and, whatever in vivo method is 
chosen, it should be representative of realistic 
doses and modes of entry into the body or wound 
environment (Singh et al, 2021). 

Long-term application of topical antimicrobial 
silver or AgNPs, either in ointments or dressings, 
should be frequently monitored by clinicians 
reviewing its administration. 
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EVIDENCE FOR THE SAFETY OF SILVER 
NANOPARTICLES IN DRESSINGS 
Wound exudate can bind excess silver ions and 
form bio-inactive salts, which act as a protective 
mechanism against metal toxicity (Lansdown, 2005). 
Whereas this may be a major feature for silver ions, 
it is not known whether this is applicable to fully 
inactivate AgNPs to a safe level. In physiological salt 
concentrations, AgNPs show a tendency to form 
large aggregates (Lok et al, 2007), which reduces the 
problem of small size particles translocating through 
the skin and this slows down the penetration into 
viable skin layers (Bianco et al, 2016). It has also 
been shown that the AgNPs from dressings remain 
in the wound locality and do not penetrate deeper 
because AgNPs primarily act on bacterial cells near 
the surface (Knetsch and Koole, 2011). Alteration of 
the structure of the AgNPs in the wound dressing 
may reduce toxicity and PVP-capped AgNPs have a 
slightly negative ζ (-10mV) charge, which generates 
an electrostatic repulsion from the surface charge on 
the cell membrane of bacteria. Uncapped AgNPs had 
a surface charge of -28mV and as the electrostatic 
potential was less than the capped AgNPs, there was 
a greater attraction between them and the bacterial 
cells with increased antimicrobial activity (El 
Badawy et al, 2011). 

When introducing any medical device to the 
market, it is important to validate any possible 
negative effects against positive benefits of 
the device. Compliance with an International 
standard ISO 10993, compiled by a panel of 
international experts from scientific and industrial 
communities, must be met in order to achieve 
acceptance by the regulatory bodies for medical 
device. (ISO 10993, 2018).

INTRODUCING VENUS AG
Venus Ag™ (SFM-LTD, Coventry, UK) is a new 
dressing, which is a soft conformable, non-woven 
fabric made from sodium carboxymethyl cellulose 
(CMC) and strengthening cellulose fibre(s). The 
structure remains intact, thus minimising pain 
when removing the dressing. There is low lateral 
wicking to protect the periwound area and the 
dressing has low shrinkage. It has a high fluid 
absorbency and supports autolytic debridement and 
entrapment of bacteria and cell debris within the 
dressing. The indications for use are second-degree 

burns, lower leg ulcers, pressure ulcers and diabetic 
foot ulcers, surgical wounds and wounds that are 
prone to bleeding.

The silver nanotechnology is effective against 
biofilm and a broad spectrum of pathogens such 
as MRSA. More importantly, in  vitro, Venus Ag 
has a low cytotoxicity profile compared to other 
commercially available silver dressings (data on file, 
SFM Ltd).

Safety studies on a new dressing, Venus Ag, have 
been undertaken and the dressing has recently 
received CE (conformité européenne) marking from 
Europe and is approved for use in humans, having 
undergone extensive testing with reassuring results. 

In safety testing, Venus Ag dressings were shown 
to be non-toxic, and have no detrimental effect on 
wound healing when tested in a rat and porcine 
model (data on file, SFM Ltd). Silver ions are 
released into the dressing from fibres impregnated 
with spherical PVP-capped AgNPs, approximately 
5–30nm (mean 14nm) in diameter, imparting an 
antimicrobial action in the dressing when wound 
exudate encounters the dressing. Venus Ag contains 
carboxymethyl cellulose fibres, a component used 
in clinical wound care in a variety of dressings for 
more than 30 years, including in Aquacel Ag. Using 
these attributes, the new dressing removes exudate 
and kills organisms within the dressing. The AgNPs 
do not elute from the dressing, thus reducing any 
toxicity issues. There are different formulations and 
weights of dressings produced (120, 160 and 200gsm 
in rope and flat form). 

Estimating the amount of available AgNPs 
eluted within the dressing was undertaken by 
taking samples of Venus Ag 200gsm weight fabric 
incubated for 72 hours. The liquid was analysed 
using a UV spectrophotometer to estimate the 
concentration of AgNPs released from the dressing 
into the liquid. The estimated quantity of silver was 
shown to be 1.6μg/day for a 70kg adult, far below 
the WHO recommended limit of 5μg/kg body 
weight/day (data on file, SFM Ltd). 

As the Venus Ag dressing is intended for 
prolonged contact with breached or compromised 
skin, an assessment of cytotoxicity, skin irritation, 
skin sensitisation, acute systemic toxicity, sub-acute/
sub-chronic toxicity, implantation and material-
mediated pyrogenicity was carried out using 
appropriate in vitro and in vivo models accepted to 
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comply with ISO 10993 testing. All results of these 
tests were passed for the criteria set by the standard 
(ISO 10993,2018) and deemed safe for use with low 
skin and cell toxicity. 

One concern of the manufacturer’s was that if the 
dressing is worn for long periods, then AgNPs may 
become embedded in the tissue and continue to 
release silver ions after the 4-week treatment period, 
therefore, exposing the wearer to silver for a longer 
time period. Due to this reasoning, the Venus Ag 
dressing was tested for genotoxicity, carcinogenicity 
and chronic toxicity to be compliant for an 
additional ISO 10993 category (part 3).

With regards to the assays for cytotoxicity (using 
appropriate cell lines), skin sensitisation (using 
guinea pigs) and skin irritation (using New Zealand 
white rabbits), acute systemic toxicity (injected into 
white mice), material-mediated pyrogenicity (rabbit 
pyrogen test), and sub-acute/sub-chronic toxicity 
effects (using a rat model), Venus Ag at three 
different concentrations of AgNPs demonstrated 
reassuring results, passing all criteria set. Wound-
healing studies in pigs and rats also provided 
evidence of a good healing performance, without 
signs of toxicity (data on file: SFM ltd). 

Other detailed biological, chemical and 
physical analysis was undertaken on the 
dressing and a comprehensive risk analysis was 
independently conducted for Venus Ag and all 
risks were identified and mitigated. The reports 
on biocompatibility tests according to ISO 10993 
concluded that Venus Ag is safe.

Currently, detailed patient studies are being 
undertaken to evaluate their effectiveness.

CONCLUSION 
It is agreed that the concentration of released silver 
ions is a significant contributor to the toxicity of 
AgNPs, even if there is disagreement on other 
factors (Matzke et al, 2014). It appears that there 
are particle-specific effects, but it is unknown 
whether these directly contribute to the toxicity. 
The smaller the particle, the greater the surface 
area-to-volume ratio and therefore the greater 
potential of silver ions being released. The shape of 
the AgNP is important, particularly with reference 
to the surface area-to-volume ratio in terms of ionic 
release potential. Assuming silver ion concentration 
is the key driver for AgNP toxicity, then it may be 

possible to estimate toxicity by estimating the 
concentration of silver ions released from the 
AgNPs. More data and studies are needed to 
confirm the in vivo effects of Ag+.

The concerns generated by in vitro studies are 
not replicated in in vivo studies or during clinical 
use (Samberg et al, 2010). There are numerous 
reports of using silver products in wound care and 
AgNPs have been used for over 20 years without 
any major adverse event (Wound International, 
2012). All nanoparticle use needs to be monitored 
but it appears that, for AgNPs in wound care, their 
benefits outweigh the risk. 
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